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The Application 
of Receptor Modeling to Air Quality Data
Les modèles récepteur 
et leurs applications 
dans le domaine de la qualité de l'air

Philip K. HOPKE*

Abstract
Receptor modeling is the application of data analysis methods to elicit information on the sources of air pollutants.

Typically, it employs methods of solving the mixture resolution problem using chemical composition data for airborne particu-
late matter samples. In such cases, the outcome is the identification of the pollution source types and estimates of the contri-
bution of each source type to the observed concentrations. It can also involve efforts to identify the direction of local sources
using wind directions or the locations of distant sources through the use of ensembles of air parcel back trajectories. In recent
years, there have been improvements in the factor analysis methods that are applied in receptor modeling as well as easier
application of trajectory methods. These methods are now in widespread use. The theoretical basics of the methods will be
presented and the recent literature will be reviewed.
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Résumé
La technique du modèle récepteur est basée sur lʼapplication de méthodes dʼanalyse des données permettant dʼextraire

de lʼinformation sur les sources de pollution de lʼair. Typiquement, cette technique fait appel à des méthodes pour résoudre le
problème du mélange des sources utilisant des données sur la composition chimique dʼéchantillons de poussières (prélevés
dans leur environnement). Il est ainsi possible dʼidentifier les différents types de source et dʼestimer leurs contributions relatives
dans les concentrations observées. Cette technique inclut également la possibilité dʼidentifier la direction des sources en uti-
lisant les directions du vent ou la localisation de sources éloignées en utilisant des rétro-trajectoires. Récemment, on a assisté
à lʼamélioration des méthodes dʼanalyse factorielle qui sont appliquées dans les modèles récepteur, et à celle des techniques
de définition de trajectoires, qui sont devenues plus facilement applicables. Ces méthodes sont maintenant très largement uti-
lisées. Les bases théoriques des méthodes seront présentées ainsi quʼune recherche bibliographique récente.
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Introduction 

The management of air quality is a difficult but an
important problem. In general it involves the identifi-
cation of the sources of materials emitted into the air,
the quantitative estimation of the emission rates of the
pollutants, the understanding of the transport of the
substances from the sources to downwind locations
and the knowledge of the physical and chemical
transformation processes that can occur during that
transport. All of those elements can then be put toge-
ther into a mathematical model that can be used to
estimate the changes in observable airborne concen-
trations that might be expected to occur if various
actions are taken. Such actions could include the
construction of new emission sources as new indus-
tries are built and begin to function or the imposition
of emission controls on existing facilities in order to
reduce the pollutant concentrations. 

However, the atmosphere is a very complex 
system and it is necessary to simplify greatly the des-
criptions of reality in order to produce a mathematical
model capable of being calculated on even the largest
and fastest computers. Significant improvements
have been made over the past 30 years in the appli-
cation of chemical transport models as both compu-
ting power and the understanding of the atmosphere
have improved.  However, there are still many instan-
ces when the models are insufficient to permit the full
development of effective and efficient air quality
manage ment strategies, particularly for airborne 
particulate matter. Hence it is necessary to have other
methods available to assist in the identification of
sources and the apportionment of the observed pollu-
tant concentrations to those sources. 

Such methods are receptor-oriented or receptor
models since they are focused on the behavior of the
ambient environment at the point of impact as oppo-
sed to the source-oriented dispersion models that
focus on the transport, dilution and transformations
that begin at the source and continue as the pollu-
tants are transported to the sampling or receptor site.
These methods have been applied primarily to air-
borne particulate matter. In the United States, there
are two size ranges of particles that are regulated by
the US Environmental Protection Agency. Particulate
matter in the air with aerodynamic diameters less that
10 μm is called PM10 whereas the mass concentra-
tion of particles less than 2.5 μm is termed PM2.5. A
comprehensive view of receptor modeling can be
found in Hopke [1991]. A review through 1996 was
provided as part of a larger report on modeling by
Seigneur et al. [1997]. An update by Hopke [2003]
presented results from 1997 to 2003.  Since that time,
there has been a rapid expansion of applications of
receptor models particularly various advanced forms
of factor analysis. European applications of receptor
modeling have been reviewed by Viana et al. [2008].
This present paper will focus on recent developments
and applications primarily elsewhere in the world.

Background

The fundamental principle of receptor modeling is
that mass conservation can be assumed and a mass
balance analysis can be used to identify and appor-
tion sources of airborne particulate matter in the
atmosphere. This methodology has generally been
referred to within the air pollution research community
as receptor modeling [Hopke, 1985; 1991]. The approach
to obtaining a data set for receptor modeling is to
determine a large number of chemical constituents
such as elemental concentrations in a number of
samples. Alternatively, automated electron micro-
scopy can be used to characterize the composition
and shape of particles in a series of particle samples.
In either case, a mass balance equation can be 
written to account for all m chemical species in the n
samples as contributions from p independent sources:

p

xij = ∑ gik ƒkj + eij (1)
k = 1

where xij is the measured concentration of the jth
species in the ith sample, fki is the concentration of the
jth species in material emitted by source k, gik is the
contribution of the kth source to the ith sample and eij
is the portion of the measurement that cannot be fit by
the model. 

There exist a set of natural physical constraints on
the system that must be considered in developing any
model for identifying and apportioning the sources of
airborne particle mass [Henry, 1991]. The fundamen-
tal, natural physical constraints that must be obeyed
are as follows: 
• The original data must be reproduced by the
model; the model must explain the observations. 
• The predicted source compositions must be non -
negative; a source cannot have a negative elemental
concentration. 
• The predicted source contributions to the aerosol
must all be non-negative; a source cannot emit nega-
tive mass. 
• The sum of the predicted elemental mass contri-
butions for each source must be less than or equal to
the total measured mass for each element; the whole
is greater than or equal to the sum of its parts. 

While developing and applying these models, it is
necessary to keep these constraints in mind in order
to be certain of obtaining physically realistic solutions. 

Thus, receptor modeling is a variation on the
"spectro chemical mixture resolution" problem in
chemometrics. However, there are some additional
complicating aspects since source profiles do not
remain constant in contrast to molecular spectra and
the environmental data tend to have much higher
noise in the measurements. This comparison is dis-
cussed in more detail by Hopke [1995]. 
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Receptor models
Sources Known 

There are a variety of ways to solve Equation (1)
depending on what information is available. If the
number and nature of the sources in the region are
known (i.e. p and fik values), then the only unknown is
the mass contribution of each source to each sample,
gki. This approach was first independently suggested
by Winchester and Nifong [1971] and by Miller et al.
[1972]. The problem is typically solved using an effec-
tive-variance least-squares approach [Watson et al.,
1990; US EPA, 2010a] that is now generally referred
to as the chemical mass balance (CMB) model.
Software [US EPA, 2010a] is available from the US
Environmental Protection Agency. Solution methods
using multivariate calibration methods have also been
proposed, and were summarized in an earlier review
[Seigneur et al., 1997]. There have not been any new
method developments in this area nor have there
been many new source profiles developed. The US
Environmental Protection Agency’s library is contai-
ned in SPECIATE (www.epa.gov/ttn/CHIEF). There
are some new profiles, particularly for spark-ignition
and diesel vehicles, that have been measured and
were recently added to the database. The most recent
review of CMB studies was by Chow and Watson [2002].

Sources Unknown 

The area of active method development has been
in the methods to be used when the source profiles
are not known. These are forms of factor analysis, but
completely different from traditional principal compo-
nents analysis and related techniques. In factor 
analysis, the problem is expanded to the solution of
the source profiles and contributions over a set of
samples. Two new approaches that have actively
used are UNMIX [Henry and Kim, 1989; Kim and
Henry, 1999; 2000] and positive matrix factorization
(PMF) [Paatero, 1997; 1999]. 

Unmix

Unmix is based on an eigenvector-based analysis
to find "edges" in the data [Henry, 2003]. The model
uses a transformation method based on the self-
modeling curve resolution (SMCR) techniques. Since
a unique solution is not possible [Henry, 1987], the
SMCR technique restricts the feasible region of the
real solution into a small region with explicit physical
constraints, such as source compositions must be
greater than or equal to zero. Explicit physical 
constraints form linear inequality constraints in the
space spanned by the eigenvectors, and these 
constraints form the feasible region in eigenvectors’
space. UNMIX is designed to resolve the most impor-
tant sources contributing to the measured mass
concentrations. Although the US Environmental
Protection Agency has developed this model as a
stand-alone program [USEPA, 2010b], it has not been
widely used. 

The model has been applied to data from
Phoenix, AZ [Lewis et al., 2003]. The analysis gene-
rated source profiles and overall average percentage
source contribution estimates for five source cate -
gories: gasoline engines (33 ± 4%), diesel engines
(16 ± 2%), secondary sulfate (19 ± 2%), crustal/soil
(22 ± 2%) and vegetative burning (10 ± 2%). In this
study, the authors were able to separate motor 
vehicle contribu tions into diesel and spark-ignition
sources. Diesel emissions were identified by high ele-
mental carbon relative to the organic carbon whereas
spark ignition vehicles had a profile with more organic
than elemental carbon. They found a substantial 
difference in the contribution of diesel emissions 
between weekend and weekday samples. 

Positive Matrix Factorization (PMF) 

PMF takes a very different approach to the factor
analysis problem. All of the other methods use an
eigenvector analysis based on a singular value
decom position (SVD). However, it can be shown
[Lawson and Hanson, 1974; Malinowski, 1991] that a
SVD is really solving the problem in a least-squares
sense. Thus, an eigenvector analysis is an implicit
least-squares analysis in that it is minimizing the sum
of squared residuals for the model. Paatero and
Tapper [1993] showed that in PCA, there is scaling of
the data by column or by row and that this scaling will
lead to distortions in the analysis. They further 
showed that optimum scaling of the data would be to
scale each data point individually so as to have the
more precise data having more influence on the solu-
tion than points that have higher uncertainties.
However, they showed that point-by-point scaling
results in a scaled data matrix that cannot be repro-
duced by a conventional factor analysis based on the
singular value decomposition. Thus, PMF takes the
approach of an explicit least-squares approach in
which the method minimizes the object function: 

n m eij
2

Q = ∑ ∑ ( __ ) (2)
i = 1   j = 1

Sij

where sij is an estimate of the "uncertainty" of the jth
variable measured in the ith sample. The factor analy-
sis problem is then to minimize Q(E) with respect to G
and F with the constraint that each of the elements of
G and F is to be non negative.  As with any factor ana-
lysis model, rotational ambiguity can be a problem,
but there is now a better understanding of the rotatio-
nal problem [Paatero et al., 2002; Paatero and Hopke,
2009] as well as a useful graphical diagnostic tool
[Paatero et al., 2005]. 

Two approaches have been developed to solve
the PMF problem. Initially, a program called PMF2 uti-
lized a unique algorithm [Paatero, 1997] for solving
the factor analytic task. For small-and medium-sized
problems, this algorithm was found to be more effi-
cient than ALS methods [Hopke et al., 1998].
Subsequently, an alternative approach that provides a
flexible modeling system was developed for solving

RETOUR
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the various PMF factor analysis least-squares 
problems [Paatero, 1999]. This approach, called the
multilinear engine (ME), 

PMF2 was initially applied to data sets of major
ion compositions of daily precipitation samples collec-
ted over a number of sites in Finland [Juntto and
Paatero, 1994] and samples of bulk precipitation
[Anttila et al., 1995] in which they are able to obtain
consider able information on the sources of these
ions. Polissar et al. [1996] applied the PMF2 program
to Arctic data from seven National Park Service sites
in Alaska as a method to resolve the major source
contributions more quantitatively. Polissar et al.
[1998] reanalyzed the Alaska data and proposed an
approach to uncertainty estimation that has now been
widely used in PMF applications.

PMF has now been used as a source apportion-
ment tool in many airborne PM composition studies
[Chueinta et al., 2000; Begum et al., 2004, 2005a,
2009; Kim and Hopke, 2004a, b; Kim et al., 2003a,
2004a, b, 2007; Lee and Hopke, 2006; Lee et al.,
2006; Liu et al., 2006; Hwang and Hopke, 2007,
Pekney et al., 2006; Sunder Raman and Hopke,
2007; Santoso et al., 2008].  It has been applied to
VOC data [Kim et al., 2005], to Aerosol Mass
Spectrometry (AMS) data [Lanz et al., 2007; Ulbrich
et al., 2008] and to particle number size distributions
[Kim et al., 2004c; Zhou et al., 2005a; Ogulei et al.,
2006; 2007 a,b; Kasumba et al., 2009].  With the dis-
tribution of a version of PMF by the US EPA (2010c),
it is now being routinely applied to many air pollution
data sets.

Advanced Model Applications

Extended Model

Based on the understanding of transport and
dispersion as well at the likely variation in source
emissions and atmospheric chemistry with day of
week and season suggest that the incorporation of
additional information such as wind speed and direc-
tion, weekday/weekend or season might permit
improved resolution of sources. The availability of the
multilinear engine [Paatero, 1999] permits building
more complex models that can be fit to the data.
Thus, a parametric approach to incorporating meteo-
rological and temporal variables into the analysis has
been developed and is term the expanded model. 

To present the expanded factor analysis
approach, the model is described from the viewpoint
of one source, denoted by p. In reality, there are seve-
ral sources and the observed concentrations are
sums of contributions due to all sources, p = 1,..., P.
In the customary bilinear analysis, the contribution rijp
of source p on day i to concentration of chemical spe-
cies j is represented by the product gipƒjp, where gip
corresponds to the strength of source p on day i, and
ƒjp corresponds to the concentration of compound j in
the emission signature of source p.

In the expanded PMF analysis, the bilinear equa-
tion (1) is augmented by another more complicated

set of equations that contain modeling information.  In
its most basic form, the contribution rijp of source p is
represented by the following expression:

rijp = mip ƒjp = D (δi, p) V (νi, p) ƒjp (3)

The known values δi and νi indicate wind direction
and wind speed on day i. The symbols D and V repre-
sent matrices, consisting of unknown values to be
estimated during the fitting process. Their columns
numbered p correspond to source number p.
Because of typographic reasons, their indices are
shown in parentheses, not as subscripts.  The index
value δi for day i is typically obtained by dividing the
average wind direction of day i (in degrees) by ten
and rounding to nearest integer. As an example, if
source 2 comes strongly from the wind direction at
90°, then the element D(9,2) is likely to become large.
The values νi are obtained from a chosen classifica-
tion of wind speeds. The following classification was
used in this work: 0 - 1.5 - 2.5 - 3.5 - 5.8 - ¥ m/s. Thus,
νi = 2 for such days when the average wind speed is
between 1.5 and 2.5 m/s.

In component form, the equations of the model
are

p

xij = ∑ gip ƒjp + eij (4)p = 1

p p

xij = ∑ mip ƒjp + e'ij = ∑ D (δi , p) V (νi, p) ƒjp + e'ij
p = 1                      p = 1

The notation mip does not indicate a factor ele-
ment to be determined, such as gip, but the expres-
sion defined by the physical model in question. In
different physical models, mip will correspond to diffe-
rent expressions. Because the variability of mip is res-
tricted by the model, the second set of equations (4)
will produce a significantly poorer fit to the data than
the first set of equations (4). The physical model, mip,
is one of multiple possible models depending on the
understanding of the system under study while the
mass balance in the first set of equations should be
much more applicable. Thus, the error estimates
connected with the second set of equations must be
(much) larger than the error estimates connected with
the first set of equations. 

The task of solving this expanded PMF model
means that values of the unknown factor matrices G,
F, D, and V are to be determined so that the model fits
the data as well as possible. In other words, the sum-
of-squares value Q, defined by

I J   I J

Q = ∑ ∑ (eij  / σij )2 + ∑ ∑ (e'ij  / σ'ij )2 (5)
i = 1 j = 1  i = 1 j = 1

is minimized with respect to the matrices G, F, D, and
V, while the residuals eij and e’ij are determined by
equations (4). The error estimates σ'ij must be speci-
fied (much) larger than the corresponding error esti-
mates σij.
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Since there are other sources of variation such as
weekend/weekday source activity patterns or seaso-
nal differences in emission rates or in atmospheric
chemistry, additional factors are included in the
model. In this case, wind direction, wind speed, time
of year, and weekend/weekday will be used.  In this
case, 24 one-hour average values are available for
wind speed and direction.  Time of year will be aggre-
gated into six two-month periods or seasons, indica-
ted for each day i by the index variables σi (The Greek
letter σ is used for two purposes: σij indicates the error
estimates of data values, while σi indicates the sea-
son number for day i). For the values i = 1 to i = 60, 
σi = 1, meaning that January and February belong to
the first season.  For the values i = 61 to i = 121, 
σi = 2, and so on.  

Instead of the basic equation (3), the non-linear
dependencies are now defined by the following  mul-
tilinear expression:

24
mip = ∑ D (δih, p) V (νih, p) W (ωi, p) S (σi, p) (6)

h = 1 

where D(δih, p) is the element of D with the index for
the wind direction during hour h of day i for the pth
source, V(νih, p) is the element of V with the index for
the wind speed during hour h of day i for the pth
source,  W(ωi, p) is the element of W with the index
corresponding to day i for the weekday/weekend 
factor for the pth  source, and S(σi, p) is the element
of S with the index corresponding to the time-of-year
classification of day i for the pth source. Each of these
matrices, D, V, W, and S, contain unknown values to
be estimated in the analysis.  The specific factor ele-
ments used to fit a particular data point are selected
based on the hourly (D, V) or daily (W, S) values of
the corresponding variables. Thus, these auxiliary
variables are not fitted, but serve as indicators to the
values to be fitted.

This model was first applied to a set of simulated
data created by the EPA [Paatero and Hopke, 2002].
Sixteen distinct source profiles were used in
Palookaville simulation: nine point sources, four
industrial complexes, one area source and two high-
ways.  Hourly meteorological data including wind
speed and direction were used in the ISC3 model to
estimate the concentrations at the receptor site. The
area profile was a mixture of dust and road profiles.
All source profiles with the exception of the petroleum
refinery were fixed. The latter profile had some built-
in variability (coefficient of variation (CV) of approxi-
mately 25%). Temporal modulation of the source
strengths (50% CV for most) was found to be essen-
tial in being able to resolve the sources by PMF or
UNMIX. A total of 366 24-hsamples were generated at
the receptor site. 

Comparisons with known true data indicate that
the analysis is successful. More factors could be
determined than by the state-of-the-art bilinear 
technique PMF. Fifteen of the 16 sources could be
resolved. Close inspection of the results reveals that

minor rotational problems still remain. They are
mainly visible so that the strongest elements of the
strongest factors tend to appear in the weaker factors.
The directional information derived from the wind
direction factors pointed to each of the point sources.
The mass apportionment was much closer to the true
values than could be obtained with the simple bilinear
modeling. This analysis was based on 24 h concen-
trations and 1-h weather data. 

Subsequently it has been applied to several real
world data sets [Kim et al., 2003b; Begum et al.,
2005b; Zhou et al., 2009] with varying degrees of 
success. In the case of Atlanta [Kim et al., 2003b],
additional sources could be resolved. For Washing -
ton, DC, the extended analysis did not resolve more
sources, but provided somewhat different sources
although there was generally reasonable correlation
among the various solutions for this data set [Begum
et al., 2005b]. However, in Cleveland [Zhou et al.,
2009], they were unable to develop a source resolu-
tion that was significantly different than that obtained
with the standard bilinear model alone (Equation 1). It
is unclear why the expanded model appears to work
for some data sets and not for others and further
study will be needed.

Multiple Time Interval Data

One of the major developments of the past
decade or so has been the deployment of continuous
monitoring systems for a variety of chemical species
associated with airborne particulate matter [Chow et
al., 2008]. These measurements are generally made
over varying time intervals ranging from 5 minutes to
24 hours. Averaging data to the longest interval will
reduce the information content of the data since short-
term high events will be averaged out of the data.
Thus, to avoid the need for averaging the data to 
longer intervals, a model was developed that permits
utilizing each measurement time on its original time
scale [Zhou et al., 2004a; Ogulei et al., 2005].  

For each concentration value, there are contribu-
tions from several sources, and source contributions
have to be averaged so that the concentration value
and the source contribution are in the same sampling
period.  The main equation of the model is as below:

p         ts2
xsj = 1/(ts2 – ts1 + 1) ∑ (ƒjp ∑gip ηjm) + esj (7)

p = 1      i = ts1

where s is the sample number, j stands for the 
species, ts2 is the end time andts1 is the start time
(described by the number of time units). The shortest
sampling interval, 10 min for this data set, is chosen
as the time unit. In Equation 1, xsj is the concentration
of jth species in s th sample, ƒjp is the mass fraction of
species j in particles from source p, gip is the p th
source mass contribution during the time units for the
s th sample and esj is the residual. The source contri-
butions are averaged over the sampling time of xsj.
If all species of all samples are measured within same
durations, ts2 = ts1, then Equation 7 becomes the
conventional two way receptor model. 
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Replicated species were measured by more than
one method with different time resolution.  In Equation
1, different values of the subscript m correspond to
different measurement methods (for one type of data,
m = 1, for the next data type, m = 2 and for a third 
different measurement, m = 3). For each sample s,
the m value corresponds to the method used for mea-
suring the sample, m = m(s). For a replicated species
j, adjustment factors, ηjm in Equation 7, are used with
the assumption that the concentration values measu-
red by different methods are proportional. An adjust-
ment factor close to 1 suggests a good agreement
between the different measurements. Usually, the
methods with longest periods  provide better accuracy
or are defined as reference methods. Thus, their
adjustment factors are set to unity by default. For non-
replicated species, no adjustment factors are needed,
so that their ηjm are set to unity by default.

If a source contains no species measured with
high temporal resolution, then there is no way to
obtain a reliable high time resolution contribution
series.  To solve this problem, a regularization equa-
tion is used to smooth the time series of source contri-
butions, as indicated by Equation 8, where gip is the
source contribution from the pth source during the ith
time unit.
gi + 1, p – gi, p = 0 + εi (8)

The total residual sum of squares is composed of
residuals from both Equations 7 and 8. When a
source includes few high time resolution species,
there is limited influence from Equations 7 and 8 will
eliminate the unreliable high time resolution details of
the contribution series in order to minimize the resi-
duals. When a source contains some high resolution
species, reducing the residual in Equation 8 leads to
an increase in the residuals of Equation 7 and the
high temporal variations tend to be conserved. The
balance between the two residuals can be controlled
by multiplying the residual in Equation 8 by a small
coefficient, such as ~ 0.1. This balancing was imple-
mented by weighting the residuals with their uncer-
tainties. In both of the applications of this model, good
resolutions of the data in Pittsburgh [Zhou et al.,
2004a] and Baltimore [Ogulei et al., 2005] were 
obtained.

Size-Composition Data

In some studies, particle samples are collected
with cascade impactors such that the PM sample ana-
lyses provide size fractionated compositions over
time. The DRUM impactor [Raabe et al., 1988]
coupled with synchrotron x-ray fluorescence [Bench
et al., 2002] can provide data resolved down to 1 hour
time intervals for up to 8 particle size fractions. Again,
these data cannot be fully exploited using the 
standard bilinear model because a give source does
not necessary emit the same composition particles
across the whole range of emitted particle sizes.
Thus, a new conceptual model can be proposed in
which each source profile is a matrix of particle 
composition as a function of size. The model to be fit

to the data is then the a sum of outer products of a
matrix (source profile) times a vector of source contri-
butions over all of the sources. This model has been
applied to three size bin data collected in Detroit, MI
[Pere-Trepat et al., 2007]. 

Nine factors were identified: road salt, industrial
(Fe + Zn), cloud processed sulfate, two types of metal
works, road dust, local sulfate source, sulfur with dust,
and homogeneously formed sulfate. Road salt had
high concentrations of Na and Cl. Mixed industrial
emissions are characterized by Fe and Zn. The cloud
processed sulfate had a high concentration of S in the
intermediate size mode. The first metal works repre-
sented by Fe in all three size modes and by Zn, Ti, Cu
and Mn. The second included a high concentration of
small size particle sulfur with intermediate size Fe, Zn,
Al, Si, and Ca.  Road dust contained Na, Al, Si, S, K
and, Fe in the large size mode. The local and homo-
geneous sulfate factors show high concentrations of
S in the smallest size mode, but different time series
behavior in their contributions. Sulfur with dust is 
characterized by S and a mix of Na, Mg, Al, Si, K, Ca,
Ti and Fe from the medium and large size modes.
This study shows the utilization of time and size 
resolved DRUM data can assist in the identification of
sources and atmospheric processes leading to the
observed ambient concentrations.

Multiple Sample Type Data

In many panel studies of the effects of airborne
particles on health, measurements are made in multiple
environments. For example, Hopke et al. [2003]
report on the analysis of elderly subjects living in a
single multifamily residence. Measurements were
made at a central outdoor site, an unoccupied room in
the building and using personal samplers on specific
individuals. Thus, different sources will affect different
sample types. Only "external" sources of ambient par-
ticles will affect the outdoor samples. However,
ambient particles will penetrate into indoor air and add
to the exposure observed in the indoor and personal
samples. Indoor sources such as cooking and the use
of personal care products will not affect the outdoor
samples.  

The expanded receptor model for this study can
be expressed as:

N N + H
xijdt = ∑gipdt ƒjp + ∑  gipdt ƒjp (9)

p = 1                  p = N + 1 (t = 1/2: personal/indoor)

N
xjdt = ∑gpdt ƒjp  (t = 3: outdoor) (10)

p = 1 

where i is the individual (subject or participant) index,
j is the species index, d is the sampling date index, t
is the type index, N is the number of external sources,
H is the number of internal sources. xijdt denotes the
concentration of species j in the sample of type t
collected by subject i on date d, gipdt denotes the
contribution of source p to the sample of type t
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collected by subject i on date d, ƒjp denotes the rela-
tive concentration of species j in source p. Since the
individuals did not have samples for every environ-
ment on every sampling date, the space of the four-
dimensional matrixes, X and G, in equations 9 and 10
is not fully occupied.  

In addition to the Baltimore elderly resident study,
there have been analyses of data for cardiac patients
in the Raleigh-Chapel Hill area of North Carolina
[Zhao et al., 2006] and of data for asthmatic children
attending a special school for moderate to severe
asthmatics in Denver [Zhao et al., 2007a]. In the case
of the Denver study, four external sources and three
internal sources were resolved from the PM2.5 data
for the three different environments. Secondary
nitrate and motor vehicle emissions were the two 
largest external sources in this study. Cooking was
the largest internal source. A significant influence of
indoor tobacco smoking on daily personal exposures
to particles was observed for those houses in which
smokers reside and the environmental tobacco
smoke contribution correlated with urinary cotinine
levels in these urban schoolchildren. The influence of
the high traffic flow outside the school on the indoor
air quality was also observed.  

Mixed Known and Unknown Source Profiles

Recently, it has been shown that the PMF
approach can be modified to utilize existing informa-
tion on source profiles [Amato et al., 2009a; Escrig et
al., 2009]. Amato et al. [2009a] applied the multilinear
engine to data from an urban background site in
Barcelona (Spain) to quantify the contribution of road
dust resuspension to PM10 and PM2.5 concentrations.
A recent emission profile of local resuspended road
dust had been previously obtained [Amato et al.,
2009b]. This a priori information was introduced into
the model as auxiliary terms in the object function to
be minimized by the implementation of so-called 
"pulling equations" [Paatero and Hopke, 2009]. 

The multilinear engine permitted an enhanced
solution when compared to the basic PMF2 results.
The enhanced analysis identified road dust source
which accounted for 6.9 μg/m3 (17%) in PM10,
2.2 μg/m3 (8%) of PM2.5 and 0.3 μg/m3 (2%) of PM1
in addition to the sources identified by PMF2. These
results reveal that resuspension was responsible of
the 37%, 15% and 3% of total traffic emissions
respectively in PM10, PM2.5 and PM1. Therefore the
overall traffic contribution resulted in 18 μg/m3 (46%)
in PM10, 14 μg/m3 (51%) in PM2.5 and 8 μg/m3 (48%)
in PM1. In PMF2 this mass explained by road dust
resuspension was re-distributed among the rest of
sources, increasing mostly the mineral, secondary
nitrate and aged sea salt contributions. 

Escrig et al. [2009] applied a similar approach to
speciated PM10 data obtained at three air quality
monitoring sites between 2002 and 2007 in a highly
industrialized area in Spain. The source apportion-
ment of PM in this area is an especially difficult task.
There are industrial mineral dust emissions that need

to be separately quantified from the natural sources of
mineral PM. On the other hand, the diversity of indus-
trial processes in the area results in a puzzling indus-
trial emissions scenario. The availability of some
specific source profiles for particular major industrial
emissions permitted the resolution of the industrial
emissions from other sources providing an opportu-
nity to quantitatively evaluate the effectiveness of the
abatement programs for air quality improvement in
this region.

Thus, it is possible to develop specific conceptual
models for a given study that makes physical and
chemical sense and then apply those models to the
data rather than trying to force all data sets to fit a 
bilinear model.

Methods using local wind data

Conditional Probability Function (CPF) 

To analyze point source impacts from various wind
directions, the conditional probability function (CPF)
[Kim et al., 2003a,b] as calculated using source
contribution estimates coupled with wind direction
values measured on site. To minimize the effect of
atmospheric dilution, daily fractional mass contribu-
tion from each source relative to the total of all 
sources was used rather than using the absolute
source contributions. The same daily fractional contri-
bution was assigned to each 3 hours period of a given
day to match to the 3 hours average wind direction.
Specifically, the CPF is defined as 

mΔθCPFΔθ = ____ (11)
nΔθ

where mΔθ is the number of occurrences from wind
sector Δθ that exceeded the threshold criterion, and
nΔθ is the total number of data from the same wind
sector. The threshold is set to a relatively high 
percentile value in the distribution of fractional contri-
butions from a given source. The sources are likely to
be located to the directions that have high conditional
probability values.

Methods incorporating back trajectories
The dispersion models describe the transport of

the particles from a source to the sampling location.
However, using an analogous model of atmospheric
transport, it is possible to calculate the position of the
air being sampled backward in time from the receptor
site from various starting times throughout the sam-
pling interval. The trajectories are then used in resi-
dence time analysis (RTA), areas of influence
analysis (AIA), quantita tive bias trajectory analysis
(QTBA), potential source con tribution function
(PSCF), and residence time weighted concentrations
(RTWC). AIA, QTBA and RTWC have only been used
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in a single publication for each method and those
results are reviewed by Seigneur et al. [1997]. PSCF
and Simplified QTBA have been primarily used in
recent published studies. 

Potential Source Contribution Function (PSCF)

The potential source contribution function (PSCF)
receptor model was originally developed by
Ashbaugh et al. [1985] and Malm et al. [1986]. It has
been applied in a series of studies over a variety of
geographical scales [Cheng et al., 1993; Gao et al.,
1993; 1994; 1996]. Air parcel back trajectories ending
at a receptor site are represented by segment end-
points. Each endpoint has two coordinates (e.g. lati-
tude, longitude) representing the central location of an
air parcel at a particular time. To calculate the PSCF,
the whole geographic region covered by the trajecto-
ries is divided into an array of grid cells whose size is
dependent on the geographical scale of the problem
so that the PSCF will be a function of locations as
defined by the cell indices i and j. 

Air parcel backward trajectories were related to
the composition of collected material by matching the
time of arrival of each trajectory at the receptor site.
The movement of an air parcel is described as series
of segment end points defined by their latitude and
longitude. PSCF values for each grid cell were calcu-
lated by counting the trajectory segment endpoints
that terminate within the grid cells. The number of
endpoints that fall in the ijth cell is n (i, j). The number
of endpoints for the same cell when the correspon-
ding samples show concentrations higher than an
arbitrarily criterion value is defined to be m (i, j). The
PSCF value for the ijth cell is defined as

PSCF (i, j) = m (i, j) / n (i, j) (12)

In the PSCF analysis, it is likely that the small
values of nij produce high PSCF values with high
uncertainties.  In order to minimize this artifact, an
empirical weight function W (nij) proposed by Zeng
and Hopke [1989] is commonly applied when the
number of the end points per a particular cell was less
than about three times the average values of the end
points per cell.

Although the trajectory segment endpoints are
subject to uncertainty, a sufficient number of end-
points should provide accurate estimates of the
source locations if the location errors are random and
not systematic. Cells containing emission sources
would be identified with conditional probabilities close
to one if trajectories that have crossed the cells effec-
tively transport the emitted contaminant to the recep-
tor site. The PSCF model thus provides a means to
map the source potentials of geographical areas. It
does not apportion the contribution of the identified
source area to the measured receptor data. 

Xie et al. [1999] used PSCF to examine the loca-
tions of the sources identified by the PMF analysis of
the data from Alert. The results of these analyses

were in agreement with earlier efforts that examined
the PSCF maps for the individual chemical consti-
tuents in the particle samples. Poissant [1999] used
PSCF to examine the likely source locations for total
gaseous mercury observed in the St Lawrence River
valley. During the winter, fall and spring period the dis-
tribution of potential sources reasonably reproduces
the North American Hg emission inventory. However,
because a single fixed criterion was over the entire
year and transport from many of the strong source
areas was weak during the summer months, few
source areas were observed during the summer data
where the concentrations were the lowest. Polissar 
et al. [2001] examined the particle data (black carbon,
light scattering and condensation nuclei counts) 
collected at Point Barrow, Alaska. They found that
they could distin guish between biogenic sources of
the small particles seen only with the condensation
nuclei counter from anthropo genic larger particles
that scatter and absorb light. The biogenic particles
came primarily from the open areas of the North
Pacific Ocean whereas most of the anthropogenic
particles came from known industrialized areas of
Russia. Begum et al. [2005c] have shown that PSCF
could accurately identify the location of a large boreal
wildfire that affected much of the northeastern United
States in July 2002.

Simplified Quantitative Trajectory Bias Analysis
(SQTBA)

Quantititative trajectory bias analysis (QTBA) was
developed by Keeler [1987] as a multiple site
approach to be able to better identify source regions
for measured downwind high concentrations. It was
applied to data collected at a number of sites in nor-
theastern United States [Keeler and Samson, 1989].
However, it is very difficult to implement and thus, the
full approach has not been applied elsewhere. It is
possible to use the basic framework, but simplify the
analysis such that it becomes a practical approach to
apply [Zhou et al., 2004b; Brook et al., 2004]. 

The probability of a tracer arriving at a point (x, y)
at time t is given as:

t ∞     ∞
A (x, t) = ∫t – τ ∫–∞ ∫–∞ Q (x, y, t | x', y', t')dx'dy'dt' (13)

where Q(x, y, t | x’, y,’ , t’) is the transition probability
density function of an air parcel located at (x’, y’) and
time t’ arriving at the receptor site (x, y) at time t.

The transition probability Q is assumed to be
approximately normally distributed about the trajec-
tory with a standard deviation that increases linearly
with time upwind:

1                1     X – x' (t' ) 2
Q (x, y, t | x', y', t' ) = ______ exp [ – __ ((________) (14)

2πσxσy 2          σx

Y – y' (t' ) 2+ (________)  )]σy
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where (X, Y) is the coordinate of the grid center and
x’(t’ ) and y’(t’ ) are the coordinates of the center line of
the trajectory. The σx and σy are approximated by

σx (t' ) = σy (t' ) = at' (15)

with a dispersion speed, a, equal to 5.4 km/h [Samson,
1980]. The potential mass-transfer field for a given
trajectory, –Tk (x, y, t | x', y', t' ), was integrated over the
upwind period, τ, of each trajectory to produce a two-
dimensional probability of natural transport field.  

t
∫t – τ Q (x, y, t | x', y', t')dt'–

Tk (x, y, | x', y' ) = _____________________ (16)
t

∫t – τ dt'

The resulting natural transport potential field, –
Tk (x, y, t | x', y', t' ), for trajectory k, was weighted by
the corresponding concentration, χk (x, y), yielding a
concentration-weighted mass transfer potential field:

~ k

T (x | x' ) = ∑ Tk (x | x' ) χk (x) (17)
k = 1

This definition of the weighted potential field is 
different from the definition given in Keeler [1987]
since it is not divided by the sum of concentrations.
Thus, the weighted potential field in Equation (17) has
the dimension of concentrations.

In PSCF, when cells are crossed by small number
of trajectories, false source areas may be found if
some of the trajectories also pass real source areas.
This problem was solved by Cheng et al. [1993] by
down-weighting the PSCF values. This "tailing effect"
[Cheng and Lin, 2001] problem also exists for SQTBA
and RTWC. To solve this problem, the SQTBA field
was down-weighted empirically by the following
method.

A coefficient cr is defined:
10K

cr = _______ (18)
2π (at0)2

where K is total number of trajectories and t0 is the
length of the longest trajectory. The final SQTBA field
is obtained by dividing the concentration-weighted
field by unweighted field:

∼
T (x, y | x', y' )

SQTBA (x, y | x', y' ) = _________________ (1 – exp
K     –

∑k = 1Tk (x, y | x', y' )

K     –( ∑k = 1Tk (x, y | x', y' ))– ________________ (19)
cr

The weighted field has the dimensions of concen-
trations and the unweighted natural field is dimen-
sionless so the final SQTBA field has the dimensions
of concentrations. This approach has been used in
several studies [Zhou et al., 2004b; Brook et al., 2004;
Zhao et al., 2007b].  

Illustrative example
St. Louis-Midwest Supersite

As an illustrative example, analysis of data from
the St. Louis - Midwest Supersite will be presented.
These data were analyzed by Lee et al. [2006].
St. Louis is a useful example since it is one of the few
locations in the United States where there are still
large industrial point sources. The metropolitan 
St. Louis area − which spans Illinois and Missouri −
was selected as part of the Supersites program to
provide comprehensive characterization of the
ambient aerosol in a setting broadly representative of
the urban Midwest. It is the latest in a series of studies
which have classified sources of ambient fine par -
ticles in St. Louis. The Regional Air Pollution Study
(RAPS) identified secondary sulfate, motor vehicles,
and point sources as major contributors to the 
St. Louis aerosol [Alpert and Hopke, 1981; Liu et al.,
1982; Severin et al., 1983; Chang et al., 1988;
Rheingrover and Gordon, 1988]. An analysis of the
Harvard Six Cities studies data for St. Louis
(1979−1988) identified mobile, crustal, metals, man-
ganese and "coal" sources, the latter dominated by
sulfate and presumably of regional origin [Laden et
al., 2000]. Both preliminary [Coutant and Swinton,
2002; Kenski and Koerber, 2002] and more-detailed
[Lee and Hopke, 2005] source apportionment has
been performed on Speciation Trends Network (STN)
data for sites in the St. Louis area.

Sample Collection and Chemical Analysis

Daily 24-hour integrated PM2.5 samples were col-
lected at the East St. Louis site (Latitude: 38.6122,
Longitude: – 90.16028, Elevation: 184 m) from mid-
April 2001 through September 2003. This analysis
used data for the two-year period of June 1, 2001 to
May 31, 2003. Samples were collected from midnight
to midnight Central Standard Time using Harvard
Impactors (HI) [Marple et al., 1987] for PM2.5 mass
and elements, the Harvard-EPA Annular Denuder
System (HEADS) [Koutrakis et al., 1990] for major
ions, and the University of Wisconsin low-volume
sampling train [Bae et al., 2004] for organic carbon
(OC) and elemental carbon (EC). The monitoring
location and selected major industrial facilities are
shown in Figure 1.

Ambient particulate matter samples were collec-
ted onto 37 mm Teflon filters downstream of the HI
sampling at 10 L/min. Gravimetric analysis was per-
formed to determine PM2.5 mass concentration
(Harvard School of Public Health, Boston, MA) and
the filters were subsequently analyzed by energy-
dispersive X-ray fluorescence (XRF) for 40 elements
(Desert Research Institute, Reno, Nevada).

HEADS sampled at 10 L/min and consisted of a
glass inlet, an impactor, two glass annular denuders
(sodium carbonate- and citric acid-coated denuders)
in series, followed by a filter pack with a 47 mm Teflon
filter followed by a 47 mm Nylon filter. Fine PM sulfate
(SO42–) was determined directly from the Teflon filter,
and fine PM nitrate (NO3–) was determined by adding
the Teflon filter nitrate and the Nylon filter nitrate. Fine
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Figure 1.
Predicted contributions (concentration ± standard deviation) of the PMF-identified sources impacting the East St. Louis site.
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Tableau 1.
Summary Statistics of PM2.5 Samples Used in the East St. Louis Data Analysis.

PM2.5 16 128 17 872 3 938 48 652 0 0

OC1 61.0 188 0.82 3 998 75 (10.6) 21 (3.0)

OC2 630 721 87.6 2 422 0 21 (3.0)

OC3 1 000 1 154 174 5 137 0 21 (3.0)

OC4 619 692 107 2 678 0 21 (3.0)

OP 249 395 0.0 3 072 14 (2.0) 21 (3.0)

EC1 230 515 2.66 3 477 35 (4.9) 21 (3.0)

EC2 973 1 038 278 3 422 0 21 (3.0)

EC3 61 92 1.02 345 30 (4.2) 21 (3.0)

SO42– 3 109 4 028 444 20 762 0 0

NO3– 1 440 2 158 80 9 904 0 17 (2.4)

NH4+ 1 566 1 912 80.5 6 760 0 33 (4.7)

Al 33.4 45.7 0.0 1 315 20 (2.8) 31 (4.4)

As 1.19 1.94 0.0 26.7 277 (39.1) 31 (4.4)

Ba 18.3 19.3 0.0 382 542 (76.4) 31 (4.4)

Ca 103 125 11.0 136 0 31 (4.4)

Co 0.57 0.77 0.0 7.06 281 (39.6) 31 (4.4)

Cr 0.528 0.31 0.0 8.36 614 (86.6) 31 (4.4)

Cu 8.32 23.7 0.0 746 14 (2.0) 31 (4.4)

Fe 102 125 15.0 1 145 0 31 (4.4)

Hg 0.86 0.94 0.0 62.7 607 (85.6) 31 (4.4)

K 60.7 70.2 12.4 408 0 31 (4.4)

Mn 2.69 4.0 0.0 84.8 69 (9.7) 31 (4.4)

Ni 0.29 0.25 0.0 30.5 564 (79.5) 31 (4.4)

P 4.47 11.9 0.0 305 360 (50.8) 31 (4.4)

Pb 10.9 18.5 0.58 593 6 (0.8) 31 (4.4)

Se 0.98 1.27 0.0 6.91 186 (26.2) 31 (4.4)

Si 94.3 127 9.82 3 489 0 31 (4.4)

Sr 0.62 0.88 0.0 8.98 274 (38.6) 31 (4.4)

Ti 1.45 2.11 0.0 10.3 446 (62.9) 31 (4.4)

V 0.88 0.66 0.0 15.8 565 (79.7) 31 (4.4)

Zn 29.9 44.5 2.19 1496 0 31 (4.4)

Zr 0.53 0.54 0.0 18.8 585 (82.5) 31 (4.4)

* Data below the detection limit were replaced by the half of the detection limit values for the geometric mean calculations.

** BDL, below the detection limit.

Concentration (ng/m3) Number Number of
of BDL**  Missing

Geometric Arithmetic Minimum Maximum Values Values 
Mean* Mean (%) (%)
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Figure 2.
Temporal mass concentration contributions at the East St. Louis site as identified by the PMF analysis.
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PM ammonium (NH4+) was estimated by adding the
Teflon filter ammonium and the stoichiometric ammo-
nium associated with the Nylon filter nitrate with
assumption that all nitrate on the Nylon filter was
ammonium nitrate volatilized from the upstream
Teflon filter. Ion chromatographic analyses were
conducted by the Desert Research Institute and the
Harvard School of Public Health. The OC/EC sampler
consisted of a PM2.5 cyclone that operated at 
24 L/min followed by two parallel OC/EC sampling
channels. Each channel sampled at 12 L/min, and
one channel consisted of an organics denuder follo-
wed by a 47 mm prebaked quartz fiber filter. The
organics denuder was fabricated with replaceable
parallel charcoal-impregnated filter strips to remove
gas phase organic compounds prior to filter collection.
Thermal-optical analyses were conducted on 
punches taken from the quartz filter, including 76 filter
blanks and 20 laboratory blanks. The quartz filters
were analyzed by the IMPROVE/Thermal Optical
Reflectance (TOR) protocol [Chow et al., 1993]
(Desert Research Institute, Reno, Nevada). On-site
hourly average wind direction and speed were mea-
sured at 10 m above ground level (AGL) at the East
St. Louis site. Samples for which PM2.5 mass concen-
trations were missing or coded invalid were excluded
from the analysis. Firework event day (July 4th and
5th) samples were also excluded.

The signal-to-noise (SN) ratio was used to screen
PM species to be included in the analysis [Paatero
and Hopke, 2003]. The SN ratio was calculated by
dividing the sum of the values, xij, that are above the
method detection limit (MDL) for a variable j in a 
sample i by the product of the number of values below
the detection limit (BDL), mDLj, and the MDL. Species
with SN ratios between 0.2 and 2 (weak variable) or
greater than 2 (good variable) were included in the
analysis, while species with their SN ratios less than
0.2 (bad variable) were excluded. XRF sulfur showed
good agreement with IC sulfate (estimated slope ±
standard error of 2.3 ± 0.01, r2 = 0.98), and IC sulfate

was used in this source apportionment analysis. XRF
sodium (Na) and magnesium (Mg) were excluded
from the analysis because they had very high analyti-
cal uncertainties. EC1 concentration was corrected
for pyrolytic carbon, OP, by subtracting OP from EC1.
Species with ≥ 90% BDL were also excluded. Finally,
a total of 709 samples and 33 species were used in
the analysis. A summary of the PM2.5 speciation data
used in this study is provided in Table 1.

Source Identification

Ten sources were identified [Lee et al., 2006] and
the average mass apportionments for these sources
are provided in Table 2. The identified sources inclu-
ded the four major industrial point sources (steel mill,
lead smelter, zinc smelter, and copper products
plant), soil, gasoline and diesel vehicle traffic, secon-
dary sulfate and nitrate, and a carbon-rich sulfate 
factor. Thus, both local area and point sources and
distant sources contribute to the fine particle mass
concentrations. Figures 1 and 2 present the source
profiles and source contribution plots, respectively.

To assist in the identification of the sources, CPF
values were calculated for each source type. For the
4 major point sources, there is good agreement 
between the observed directions and the location of
the specific facilities. For example, the CPF for the
lead smelter is shown in Figure 3. Examination of the
time series of resolved source contributions for the
lead smelter (Figure 2) shows higher concentrations
through the end of 2001, some higher concentrations
during the initial months of 2002 and then relatively
low concentrations until the end of the sampling 
program. It was determined that the smelter installed
new control systems at the end of 2001, had some
initial operating problems with these new control 
systems, and then they operated effectively for the
rest of the period. Thus, the resolved contributions
show a time pattern that corresponds well with the
plant operations.
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Secondary sulfate 32.6 (1.1)
Carbon-rich sulfate 19.6 (0.4)
Gasoline exhaust 16.4 (0.6)
Secondary nitrate 15.3 (0.5)
Steel processing 6.8 (0.2)
Airborne soil 4.2 (0.3)
Diesel emissions/railroad traffic 2.1 (0.1)
Zinc smelting 1.3 (0.1)
Lead smelting 1.3 (0.1)
Copper production 0.5 (0.04)

Table 2.
Average Source Contributions from PMF 
to Measured PM2.5 Mass Concentration.

Average 
source contribution
(standard error), %

Figure 3. 
CPF plotted on a map of the region 

showing the influence of the primary lead smelter 
to the southwest of the sampling site.
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Soil is another primary source of airborne particles
that normally does not contribute significantly to fine
particle mass. It can be noted in Figure 2 that soil
contributions are generally low, but there was a major
spike early in July 2002. Examining the back trajec-
tory calculated for that day (Figure 4) using the NOAA
HYbrid Single-Particle Lagrangian Integrated Trajec -
tory [Draxler and Rolph, 2010] shows that this high
concentration event was the result of a Saharan
Desert dust episode. This dust cloud was observed
across the midwestern and eastern US in early July
2002. Thus, although the low common concentrations
of soil arise from local sources primarily resuspended
road dust, there are periodic episodes of long range
transported dust that produce the highest observed
concentrations. 

Concentrations of secondary species such as sul-
fate and nitrate are generally driven by transport.
However, Zhao et al. [2007b] have shown that there
are higher concentrations of nitrate in urban areas of

the midwestern US whereas sulfate was higher in
rural areas. They suggested that there was local pro-
duction of nitric acid since the reaction of nitrogen
dioxide with hydroxyl radical is an order of magnitude
faster than the comparable reaction with sulfur
dioxide. Examination of Figure 2 shows that sulfate is
higher in the summer while nitrate is higher in the 
winter. Figure 5 shows the PSCF map for sulfate 
observed in St. Louis. Although prevailing winds are
from the west, the areas of highest source emissions
that influence this area are to the east where there are
large numbers of coal-fired power plants along the
Ohio and Tennessee Rivers.  

There is an interesting contrast in the nitrate
PSCF map (Figure 6) where there is some influence
from the coal-fired power plants and possibly the
Detroit area. However, there are areas of high proba-
bility in northwestern Iowa and Kansas where there
are no known large scale emissions of NOx.
However, ammonium nitrate formation is an equili-
brium process that depends on both nitric acid and
ammonia concentrations. Figure 7 is an emissions
inventory provided by the US EPA and shows high
emissions areas for ammonia. The region in north-
western Iowa is dominated by large scale hog pro-
duction whereas the emissions in Kansas are likely
from extensive ammoniacal fertilizer use on large
scale crop production. 
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Figure 6.
PSCF map showing source regions for nitrate

observed in St. Louis.

Figure 7.
Map showing the 2001 EPA estimates of ammonia

emission rates across the United States.

Figure 4. 
Back trajectory plot showing the path of the air parcel

arriving in St. Louis at 18:00 UTC on July 1, 2002.
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Thus, commonly available methods provide good
resolution of major source types. In the case of speci-
fic point sources that have easily defined emission
profiles, the impacts of these specific facilities can be
determined. 

Future directions
There is growing interest in the use of resolved

source contributions in epidemiological studies of the
relationships between airborne particle and adverse
human health effects [Thurston et al., 2005]. It is
thought unlikely that all particles have equal toxicity,
hence the problem then exists of how to organize
data characterizing particle samples to enter appro-
priate statis tical models. There are too many chemical
components typically measured and there is often
high correlation among them because they do come
from a limited number of common sources. Hence it is
anticipated that there will be an increased demand for
the easy-to-use software that will permit even 
complex receptor models to be applied to a wider
variety of available data. 

Finally, as the EPA continues to reduce its air 
quality standard values and declares additional areas
of the United States to be in non-attainment of the

PM2.5 ambient air quality standard, there will be appli-
cation of these receptor model methods to data such
as those from the Speciation Network to provide infor-
mation for state and local air quality management
strategy development. A similar problem will arise in
Europe as the new European PM10 standards start to
be enforced and areas are identified that have 
problems that require identification and quantita tive
apportionment of particle sources. Thus, receptor
models continue to be developed and improved and
there appears to be a substantial need for the appli-
cation in the near future. 

Acknowledgment
This paper reflects the work of many students and

post-doctoral associates in my laboratory. I would like
to acknowledge their efforts in the development and
implementation of these methods leading to the 
substantial literature in the field that is now available.
The author also gratefully acknowledges the NOAA
Air Resources Laboratory (ARL) for the provision of
the HYSPLIT transport and dispersion model and/or
READY website (http://www.arl.noaa.gov/ready.php)
used in this publication.  

References

– Alpert DJ, Hopke PK. A determination of the sources of airborne particles collected during the regional
air pollution study. Atmos. Environ. 1981 ; 15 : 675-87.

– Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK. Quantifying Road Dust
Resuspension in Urban Environment by Multilinear Engine: a Comparison with PMF2. Atmospheric

Environ. 2009a ; 43 : 2770-80.
– Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T. Spatial and chemical patterns of PM10

in road dust deposited in urban environment. Atmospheric Environment 2009b ; 43 : 1650-9.
– Anttila P, Paatero P, Tapper U, Jaarvinen O. Application of positive matrix factorization to source appor-

tionment: results of a study of bulk deposition chemistry in Finland. Atmos. Environ. 1995 ; 29 : 1705-18. 
– Ashbaugh LL, Malm WC, Sadeh WZ. A residence time probability analysis of sulfur concentrations at

Grand Canyon National Park. Atmos. Environ. 1985 ; 19 : 1263-70. 
– Bae MS, Schauer JJ, DeMinter JT, Turner JR, Smith D, Cary RA. Validation of a semi-continuous instru-

ment for elemental carbon and organic carbon using a thermal-optical method. Atmos. Environ. 2004 ;
38 : 2885-93.

– Begum BA, Kim E, Biswas SK, Hopke PK. Investigation of sources of atmospheric aerosol at urban and
semi-urban areas in Bangladesh. Atmos. Environ. 2004 ; 38 : 3025-38.

– Begum BA, Biswas SK, Kim E, Hopke PK, Khaliquzzaman M. Investigation of sources of atmospheric
aerosol at a hot spot area in Dhaka, Bangladesh. J. Air & Waste Manage. Assoc. 2005a ; 55 : 227-40.

– Begum BA, Hopke PK, Zhao W. Source Identification of Fine Particles in Washington DC by Expanded
Factor Analysis Modeling. Environ. Sci. Technol. 2005b ; 55 : 227-40.

– Begum BA, Kim E, Jeong CH, Lee DW, Hopke PK. Evaluation of the potential source contribution func-
tion using the 2002 Quebec forest fire episode. Atmospheric Environment 2005 ; 39 : 3719-24.

– Begum BA, Biswas SK, Nasiruddin M, Hossain AMS, Hopke PK. Source Identification of Chittagong
Aerosol by Receptor Modeling. Environmental Engineering Science 2009 ; 26 : 679-89.



106 POLLUTION ATMOSPHÉRIQUE - NUMÉRO SPÉCIAL - SEPTEMBRE 2010

RETOUR 
AUX SOURCES

– Bench G, Grant PG, Ueda D, Cliff SS, Perry KD, Cahill TA. The use of STIM and PESA to measure pro-
files of aerosol mass and hydrogen content, respectively, across Mylar rotating drum impactor samples.
Aerosol Science and Technology 2002 ; 36 : 642-51.

– Brook JR, Johnson D, Mamedov A. Determination of the source areas contributing to regionally high
warm season PM2.5 in eastern North America. J. Air Waste Manage. Assoc. 2004 ; 54 : 1162-9.

– Chang SN, Hopke PK, Gordon GE, Rheingrover SW. Target transformation factor analysis of airborne
particulate samples selected by wind-trajectory analysis. Aerosol Sci. Technol. 1988 ; 8 : 63-80.

– Cheng MD, Lin CJ. Receptor modeling for smoke of 1998 biomass burning in Central America. Journal

of Geophysical Research 2001 ; 106 : 22871-86.
– Cheng MD, Hopke PK, Zeng Y. A receptor methodology for determining source regions of particle sulfate

composition observed at Dorset, Ontario. J. Geophys. Res. 1993 ; 98 : 16839-49. 
– Chow J, Watson J. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other 

sources by the chemical mass balance receptor model. Energy & Fuels 2002 ; 6 : 222-60. 
– Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG. The DRI thermal/optical reflec-

tance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos.

Environ. 1993 ; 27A : 1185-201.
– Chow JC, Doraiswamy P, Watson JG, Antony-Chen LW, Ho SSH, Sodeman DA. Advances in integrated

and continuous measurements for particle mass and chemical composition. J. Air Waste Manage. Assoc.

2008 ; 58 : 141-63.
– Chueinta W, Hopke PK, Paatero P. Investigation of sources of atmospheric aerosol in urban and subur-

ban residential areas in Thailand by positive matrix factor ization. Atmos. Environ. 2000 ; 34 : 3319-29. 
– Coutant BW, Swinton KE. Preliminary source apportionment of speciated PM2.5 measurements in 

St. Louis, paper #55 presented at the Symposium on Air Quality Measurement Methods and Technology
– 2002, Air & Waste Management Association, San Francisco, CA, November 13−15.

– Draxler RR, Rolph GD. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access
via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources
Laboratory 2010, Silver Spring, MD.

– Escrig A, Monfort E, Celades I, Querol X, Amato F, Minguillón MC, Hopke PK. Application of optimally
scaled target factor analysis for assessing source contribution of ambient PM10. J. Air Waste Manage.

Assoc. 2009 ; 59 : 1296-307.
– Gao N, Cheng MD, Hopke PK. Potential source contribution function analysis and source apportionment

of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. Anal.

Chim. Acta 1993 ; 277 : 369-80. 
– Gao N, Cheng MD, Hopke PK. Receptor modeling for airborne ionic species collected in SCAQS, 1987.

Atmos. Environ. 1994 ; 28 : 1447-70. 
– Gao N, Hopke PK, Reid NW. Possible sources of some trace elements found in airborne particles and

precipitation in Dorset, Ontario. J. Air Waste Manage. Assoc. 1996 ; 46 : 1035-47. 
– Henry RC. Current factor analysis models are ill-posed. Atmos. Environ. 1987 ; 21 : 1815-20. 
– Henry RC. Multivariate receptor models. In Receptor Modeling for Air Quality Management. Hopke PK

(ed). Elsevier 1991, Amsterdam : 117-47. 
– Henry RC. Multivariate receptor modeling by N-dimensional edge detection. Chemom. Intell. Lab. Syst.

2003 ; 65 : 179-89.
– Henry RC, Kim BM. Extension of self-modeling curve resolution to mixtures of more than three compo-

nents. Part 1. Finding the basic feasible region. Chemom. Intell. Lab. Syst. 1989 ; 8 : 205-16. 
– Hopke PK. Receptor Modeling in Environmental Chemistry. Wiley, New York 1985. 
– Hopke PK (ed). Receptor Modeling for Air Quality Manage ment. Elsevier, Amsterdam 1991.
– Hopke PK. The mixture resolution problem applied to airborne particle source apportionment. In

Chemometrics in Environmental Chemistry, Springer 1995, Heidelberg : 47-86. 
– Hopke PK. Recent developments in receptor modeling. J. Chemometrics 2003 ; 17 : 255-65
– Hopke PK, Paatero P, Jia H, Ross RT, Harshman RA. Three-way (PARAFAC) factor analysis: examina-

tion and comparison of alternative computational methods as applied to ill-conditioned data. Chemom.

Intell. Lab. Syst. 1998 ; 43 : 25-42. 
– Hopke PK, Ramadan Z, Paatero P, Norris G, Landis M, Williams R, Lewis CW. Receptor Modeling of

Ambient and Personal Exposure Samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure
Study. Atmospheric Environ. 2003 ; 37 : 3289-302.

– Hwang IJ, Hopke PK. Estimation of source apportionment and potential source locations of PM2.5 at a
west coastal IMPROVE site. Atmos. Environ. 2007 ; 41 : 506-18.

– Juntto S, Paatero P. Analysis of daily precipitation data by positive matrix factorization. Environmetrics

1994 ; 5 : 127-44. 



POLLUTION ATMOSPHÉRIQUE - NUMÉRO SPÉCIAL - SEPTEMBRE 2010 107

RETOUR
AUX SOURCES

– Kasumba J, Hopke PK, Chalupa DC, Utell MJ. Comparison of sources of submicron particle number
concentrations measured at two sites in Rochester, NY. Science of the Total Environment 2009 ; 407 :
5071-84.

– Keeler GJ. (1987) A hybrid approach for source apportionment of atmospheric pollutants in the north -
eastern United States, Ph.D. Dissertation, 1987, University of Michigan, Ann Arbor MI.

– Keeler GJ, Samson J. Spatial representativeness of trace element ratios. Environmental Science and
Technology 1989 ; 23 : 1358-64.

– Kenski DM, Koerber M. CMB analysis of urban PM2.5 data, paper presented at the Symposium on Air
Quality Measurement Methods and Technology – 2002, Air & Waste Management Association, San
Francisco, CA, November 13−15.

– Kim BM, Henry RC. Extension of self-modeling curve resolution to mixtures of more than three compo-
nents. Part 2. Finding the complete solution. Chemom. Intell. Lab. Syst. 1999 ; 49 : 67-77.

– Kim BM, Henry RC. Extension of self-modeling curve resolution to mixtures of more than three compo-
nents. Part 3. Atmospheric aerosol data simulation studies. Chemom. Intell. Lab. Syst. 2000 ; 52 : 145-54. 

– Kim E, Hopke PK, Edgerton ES. Source identification of Atlanta aerosol by positive matrix factorization.
J. Air & Waste Manage. Assoc. 2003a ; 53 : 731-9.

– Kim E, Hopke PK, Paatero P, Edgeton ES. Incorporation of parametric factors into multilinear receptor
models studies of Atlanta aerosol. Atmospheirc Environ. 2003b ; 37 : 5009-21.

– Kim E, Hopke PK. Improving source identification of fine particles in a rural northeastern US area utili-
zing temperature-resolved carbon fractions. J. Geophys. Res. 2004a ; 109 : D09204.

– Kim E, Hopke PK. Source apportionment of fine particles at Washington, DC utilizing temperature resol-
ved carbon fractions. J. Air & Waste Manage. Assoc. 2004b ; 54 (7) : 773-85.

– Kim E, Hopke PK, Edgerton ES. Improving source identification of Atlanta aerosol using temperature
resolved carbon fractions in Positive Matrix Factorization. Atmos. Environ. 2004a ; 38 (20) : 3349-62.

– Kim E, Hopke PK, Lason TV, Mayjut NN, Lewtas J. Factor analysis of Seattle fine particles, Aeros. Sci.
And Techno. 2004b ; 38 (7) : 724-38.

– Kim E, Hopke PK, Larson TV, Covert DS. Analysis of ambient particle size distributions using UNMIX and
Positive Matrix Factorization. Environmental Science and Technology 2004c ; 38 : 202-9.

– Kim E, Brown SG, Hafner HR, Hopke PK. Characterization of Non-Methane Volatile Organic Compounds
Sources in Houston during 2001 using Positive Matrix Factorization. Atmospheric Environ. 2005 ; 39 :
5934-46. 

– Kim HS, Huh JB, Hopke PK, Holsen TM, Yi SM. Characteristics of the major chemical constituents of
PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos. Environ. 2007 ; 41 (32) : 6762-70.

– Koutrakis P, Wolfson JM, Brauer M, Spengler JD. Design of a glass impactor for an annular denuder/
filter pack system. Aerosol Sci. Technol. 1990 ; 12 : 607-12.

– Laden F, Neas FM, Dockery DW, Schwartz J. Association of fine particulate matter from different 
sources with daily mortality in six U.S. cities. Environ. Health Perspect. 2000 ; 108 : 941-7.

– Lawson CL, Hanson RJ. Solving Least  Squares Problems. Prentice-Hall: Englewood Cliffs, NJ, 1974. 
– Lanz VA, Alfarra MR, Baltensperger U, Buchmann B, Hueglin C, Prevot ASH. Source apportionment of

submicron organic aerosol at an urban site by factor analytical modeling of aerosol mass spectra. Atmos.
Chem. Phys. 2007 ; 7 (6) : 1503-22.

– Lee JH, Hopke PK. Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data.
Atmos. Environ. 2006 ; 40 : S360-77.

– Lee JH, Hopke PK, Turner JR. Source Identification of Airborne PM2.5 at the St. Louis-Midwest Supersite.
J. Geophys. Res. 2006 ; 111 : D10S10.

– Lewis CW, Norris GA, Henry RC, Conner TL. Source apportionment of Phoenix PM2.5 aerosol with the
UNMIX receptor model. J. Air Waste Manage. Assoc. 2003 ; 53 : 325-38. 

– Liu CK, Roscoe BA, Severin KG, Hopke PK. The application of factor analysis to source apportionment
of aerosol mass. Am. Ind. Hyg. Assoc. J. 1982 ; 43 : 314-8.

– Liu W, Wang Y, Russell AG, Edgerton ES. (2006) Enhanced source identification of Southeast aerosols
using temperature resolved carbon fractions and gas phase components. Atmos. Environ. 2006 ; 40 :
S445-66.

– Malinowski ER. Factor Analysis in Chemistry (2nd ed.). Wiley 1991, New York. 
– Malm WC, Johnson CE, Bresch JF. Application of principal component analysis for purposes of identi-

fying source-receptor relationships. In: Receptor Methods for Source Apportionment, Pace TG (ed) 1986.
Air Pollution Control Association: Pittsburgh, PA, 127-48. 

– Marple VA, Rubow KL, Turner W, Spengler JD. Low flow rate sharp cut impactors for indoor air sampling:
design and calibration. J. Air Poll. Control Assoc. 1987 ; 37 : 1303-7.



108 POLLUTION ATMOSPHÉRIQUE - NUMÉRO SPÉCIAL - SEPTEMBRE 2010

RETOUR 
AUX SOURCES

– Miller MS, Friedlander SK, Hidy GM. A chemical element balance for the Pasadena aerosol. J. Colloid
Interface Sci. 1972 ; 39 : 65-176. 

– Ogulei D, Hopke PK, Zhou L, Pancras JP, Park SS, Ondov JM. Receptor Modeling for Multiple Time
Resolved Species: The Baltimore Supersite; Atmospheric Environ. 2005 ; 39 : 3751-62.

– Ogulei D, Hopke PK, Wallace LA. Analysis of indoor particle size distributions from an occupied town-
house using positive matrix factorization. Indoor Air 2006 ; 16 : 204-15.

– Ogulei D, Hopke PK, Ferro AR, Jaques PA. Factor analysis of submicron particle size distributions near
a major United States-Canada trade bridge. J Air Waste Manage Assoc 2007a ; 57 : 190-203.

– Ogulei D, Hopke PK, Chalupa D, Utell M. Modeling source contributions to submicron particle number
concentrations measured in Rochester, NY. Aerosol Sci Tech 2007b ; 41 : 179-201.

– Paatero P. Least squares formulation of robust, non negative factor analysis. Chemom. Intell. Lab. Syst.
1997 ; 37 : 23-35. 

– Paatero P. The multilinear engine-a table-driven least squares program for solving multilinear problems,
including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 1999 ; 8 : 854-88.

– Paatero P, Hopke PK. Utilizing wind direction and wind speed as independent variables in multilinear
receptor modeling studies. Chemom. Intell. Lab. Syst. 2002; 60 : 25-41. 

– Paatero P, Hopke PK. Discarding or downweighting high noise variables in factor analytic models. Anal.
Chim. Acta 2003 ; 490 (1) : 277-89.

– Paatero P, Hopke PK. (2009) Rotational tools for factor analytic models. J. Chemometrics 2009 ; 23 : 91-100.
– Paatero P, Tapper U. Analysis of different modes of factor analysis as least squares ft problems.

Chemom. Intell. Lab. Syst. 1993 ; 18 : 183-94. 
– Paatero P, Hopke PK, Song XH, Ramadan Z. Understanding and controlling rotations in factor analy tic

models. Chemom. Intell. Lab. Syst. 2002 ; 60 : 253-64. 
– Paatero P, Hopke PK, Begum BA, Biswas SK. A graphical diagnostic method for assessing the rotation

in factor analytical models of atmospheric pollution. Atmos. Environ. 2005 ; 39 : 193-201.
– Pekney NJ, Davidson CI, Zhou L, Hopke PK. Application of PSCF and CPF to PMF-modeled sources of

PM2.5 in Pittsburgh. Aeros. Sci. Technol. 2006 ; 40 (10) : 952-61.
– Pere-Trepat E, Hopke PK, P Paatero P. Source Apportionment of Time and Size Resolved Ambient

Particulate Matter Measured with a Rotating DRUM Impactor. Atmospheric Environ. 2007 ; 41 : 5921-33.
– Poissant L. Potential sources of atmospheric total gaseous mercury in the St. Lawrence River valley.

Atmos. Environ. 1999 ; 33 : 2537-47. 
– Polissar AV, Hopke PK, Harris JM. Source regions for atmospheric aerosol measured at Barrow, Alaska.

Environ. Sci. Technol. 2001 ; 35 : 4214-26. 
– Polissar AV, Hopke PK, Malm WC, Sisler JF. The ratio of aerosol optical absorption coeffcients to sulfur

concentrations, as an indicator of smoke from forest fires when sampling in polar regions. Atmos.
Environ. 1996 ; 30 : 1147-57. 

– Polissar AV, Hopke PK, Malm WC, Sisler JF. Atmospheric aerosol over Alaska: 2. Elemental composi tion
and sources. J. Geophys. Res. 1998 ; 103 : 19045-57. 

– Raabe OG, Braaten DA, Axelbaum RL, Teague SV, Cahill TA. (1988) Calibration Studies of the DRUM
Impactor. J. Aerosol Sci. 1998 ; 19 : 183-95.

– Rheingrover SW, Gordon GE. Wind-trajectory method for determining compositions of particles from
major air pollution sources. Aerosol Sci. Technol. 1988 ; 8 : 29-61.

– Samson PJ. Trajectory analysis of summer time sulfate concentrations in the northeastern United States.
Journal of Applied Meteorology 1980 ; 19 : 1382-94.

– Santoso M, Hopke PK, Hidayat A, Dwiana LD. Sources identification of the atmospheric aerosol at urban
and suburban sites in Indonesia by Positive Matrix Factorization. Sci. Total Environ. 2008 ; 397 : 229-37.

– Seigneur C, Pai P, Louis JF, Hopke PK, Grosjean D. Review of Air Quality Models for Particulate Matter,
Report 4669. American Petroleum Institute 1997, Washington, DC. 

– Thurston GD, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC, Kim E, Laden F, Lall R, Larson TV,
Liu H, Neas L, Pinto J, Stolzel M, Suh H, Hopke PK. Workgroup report: Workshop on source apportion-
ment of particulate matter health effects – Intercomparison of results and implications. Environmental
Health Perspectives 2005 ; 113 : 1768-74.

– Ulbrich IM, Canagaratna MR, Zhang Q, Worsnop DR, Jimenez JL. Interpretation of organic components
from positive matrix factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. Discuss.
2008 ; 8 : 6729-91.

– U.S. Environmental Protection Agency (USEPA). Chemical Mass Balance (CMB) Model. 2010a.
www.epa.gov/ttn/scram/receptor_cmb.htm

– U.S. Environmental Protection Agency (USEPA). EPA Unmix 6.0 Model. 2010b. 
www.epa.gov/heasd/products/unmix/unmix.html



POLLUTION ATMOSPHÉRIQUE - NUMÉRO SPÉCIAL - SEPTEMBRE 2010 109

RETOUR
AUX SOURCES

– U.S. Environmental Protection Agency (USEPA). EPA Positive Matrix Factorization (PMF) 3.0 Model;
2010c. www.epa.gov/heasd/products/pmf/pmf.html

– Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius A, 
Szidat S, Prevot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, 
Maenhaut W, Hitzenberger R. Source apportionment of particulate matter in Europe: A review of methods
and results. J. Aerosol Sci. 2008 ; 39 : 827-49.

– Watson JG, Robinson NF, Chow JC, Henry RC, Kim BM, Pace TG, Meyer EL, Nguyen Q. The
USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environ. Software 1990 ; 5 : 38-49. 

– Winchester JW, Nifong GD. Water pollution in Lake Michigan by trace elements from pollution aerosol
fallout. Water Air Soil Pollut 1971 ; 1 : 50-64. 

– Xie YL, Hopke PK, Paatero P, Barrie LA, Li SM. Locations and preferred pathways of possible sources
of Arctic aerosol. Atmos. Environ. 1999 ; 33 : 2229-39. 

– Zeng Y, Hopke PK. A study on the sources of acid precipitation in Ontario, Canada. Atmospheric
Environment 1989 ; 23 : 1499-509.

– Zhao W, Hopke PK, Norris G, Williams R, Paatero P. Source Apportionment and Analysis on Ambient and
Personal Exposure Samples with a Combined Receptor Model and an Adaptive Blank Estimation
Strategy. Atmospheric Environ. 2006 ; 40 : 3788-801.

– Zhao W, Hopke PK, Gelfand EW, Rabinovitch N. Use of an Expanded Receptor Model for Personal
Exposure Analysis in Schoolchildren with Asthma. Atmospheric Environ. 2007a ; 41 : 4084-96.

– Zhao W,  Hopke PK, Zhou L. Spatial Distribution of Source Locations for Particulate Nitrate and Sulfate
in the Upper-Midwestern United States. Atmospheric Environ. 2007b ; 41 : 1831-47.

– Zhou L, Hopke PK, Paatero P, Ondov JM, Pancras JP, Penney NJ, Davidson CI. Advanced factor analy-
sis for multiple time resolution aerosol composition data. Atmospheric Environ. 2004a ; 38 : 4909-20.

– Zhou L, Hopke PK, Liu W. Comparison of two trajectory-based models for locating particle sources for
two rural New York sites. Atmospheric Environment 2004b ; 38 : 1955-63.

– Zhou L, Hopke PK, Stanier C, Pandis SN. Mining airborne particulate size distribution data by positive
matrix factorization. J Geophys Res 2005a ; 110 : D07S19.

– Zhou L, Hopke PK, Stanier C, Pandis SN, Ondov JM, Pancras JP. Investigation of the relationship 
between chemical composition and size distribution of airborne particles by partial least squares (PLS)
and positive matrix factorization (PMF). J Geophys Res 2005b : D07S18.




